Publications using SKMF

Erdélyi Z, Pasichnyy M, Bezpalchuk V, Tomán J, B. Gajdics, Gusak A
Stochastic Kinetic Mean Field Model
Computer Physics Communications 204: pp. 31-37. (2016)

V. M. Bezpalchuk, R. Kozubski, A. M. Gusak
Simulation of the Tracer Diffusion, Bulk Ordering, and Surface Reordering in F.C.C. Structures by Kinetic Mean-Field Method
Usp. Fiz. Met., 18, No. 3: 205-233 (2017)

Volodymyr Bezpalchuk, Rafal Abdank-Kozubski, Mykola Pasichnyy, Andriy Gusak
Tracer Diffusion and Ordering in FCC Structures - Stochastic Kinetic Mean-Field Method vs. Kinetic Monte Carlo
Defect and Diffusion Forum, Vol. 383, pp. 59-65, (2018)

Bence D. Gajdics, János J. Tomán, Fanni Misják, György Radnóczi,  Zoltán Erdélyi
Spinodal Decomposition in Nanoparticles - Experiments and Simulation
Defect and Diffusion Forum, Vol. 383, pp. 89-95, (2018)

Andriy Gusak and Tetiana Zaporozhets
Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
Metallofiz. Noveishie Tekhnol., 40, No. 11: 1415-1435 (2018)

Andriy Gusak, Tetiana Zaporozhets, Nadiia Storozhuk
Phase competition in solid-state reactive diffusion revisited—Stochastic kinetic mean-field approach
J. Chem. Phys. 150, 174109 (2019)

Bence Gajdics, János J. Tomán, Helena Zapolsky, Zoltán Erdélyi, Gilles Demange
A multiscale procedure based on the stochastic kinetic mean field and the phase-field models for coarsening
Journal of Applied Physics 126, 065106 (2019)

Bence Gajdics, János J. Tomán, Zoltán Erdélyi
Composition dependent gradient energy coefficient: How the asymmetric miscibility gap affects spinodal decomposition in Ag-Cu?
Calphad, 67, 101665 (2019)

Tetyana V. Zaporozhets, Andriy Taranovskyy, Gabriella Jáger, Andriy M. Gusak, Zoltán Erdélyi, János J. Tomán
The effect of introducing stochasticity to kinetic mean-field calculations: Comparison with lattice kinetic Monte Carlo in case of regular solid solutions
Computational Materials Science, XX, XXXXX (2019) -accepted, in press